MATH1031

DISCRETE MATHEMATICS

Epiphany 2025-2026

IRENE AYUSO VENTURA

Based on lectures by CONRADO DA COSTA, SOPHY DARWIN and ANDREW WADE.

“Graph theory is the study of relationships.”

— Paul Erdés

Please send questions, comments or corrections to irene.ayuso-ventura@durham. ac.uk.

January 20, 2026



Contents

8 Whatisagraph? ....... .. ... .. .. .. .. ... 2
8.1 Basicdefinitions . . . . . . . . . ... 2
8.2 Some standard simple graphs . . . . ... .. oL Lo L 4
8.3 Handshaking . . ... .. ... .. . .. 5
8.4 Graphisomorphism . . . . ... ... .. .. ... ... 6
8.5 Complements . . . . .. .. ... . .. e 8
8.6 Subgraphs . . . . . ... 8

9 Euleriangraphs ... ....... .. .. .. ... ... 9
9.1 Travellingingraphs. . . . . ... .. . .. ... 9
9.2 ConnectedNess . . . . . . . it e 11
9.3 The bridges of KOnigsberg . . . . . . . .. . ... .. 12
9.4 Euler'stheorem . .. ... ... . . . . ... 12

10 Planar graphs .. ...... .. ... .. . ... ... 14
10.1 The three utilities problem . . . . .. ... ... ... .. 14
10.2 Facesand boundaries. . . . . . ... .. ... 15
10.3 EulersFormula . ... ... ... . ... .. 17
10.4 Simple planar graphs have fewedges . . . . .. ... .. ... .. .. .. .. ... 18
10.5 Platonic graphs . . . . . . . ... 20



Chapter 8. What is a graph?

8.1 Basic definitions

Informally, a graph consists of a set of vertices, represented graphically by points, together with edges,
represented by lines, that join certain pairs of vertices, as in the following figure:
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Figure 8.1: Example of a graph with vertex set V' = {a, b, ¢, d, e}, and edge set E = {ab, ac, bc, cd}.
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Definition 8.1.1. A (general) graph G = (V, E) consists on a pair of sets (V, E) where V is the vertex set
and E C V? =V x V is the edge set.

Remark 8.1.2. Since V' x V is a set of ordered pairs, the edges of the graph defined above are ordered
pairs of vertices. More precisely, for u,v € V:

* The pairs (u,v) and (v, u) are different. In this case, the edge (v, v) may be interpreted as an edge
from v to v; such edges are called directed edges. A graph containing directed edges is called a
directed graph.

* The pairs (u,u) also belong to V' x V. These would correspond to edges that start and end at the
same vertex, and are called loops.

b C

Figure 8.2: Example of a directed graph with a loop. The vertex set is V' = {a, b, ¢} and the edge set is
E = {(a,b),(b,a),(c,a),(c,c)}. Notice that (a,b) and (b, a) are different edges and are represented by
arrows in opposite directions.

! In this course we will not consider directed graphs nor graphs with loops.

In order to exclude directed edges and loops, we should take our edge set from a different collection. For
V be a vertex set, let

(Z) = {{U»U} cuw €V, u# u}, (8.1)

be the set of unordered pairs of distinct vertices.

Remark 8.1.3. Recall that (u, v) denotes an ordered pair of vertices, so that in general (u,v) # (v,u). By
contrast, {u,v} denotes an unordered pair of vertices, and hence

{u,v} = {v,u}.

This distinction is the reason why taking £ C V' x V leads naturally to directed edges, whereas taking
E c (Y) produces undirected edges.



Definition 8.1.4. A simple graph G = (V, E) consists on a pair of sets (V, E) where V is the vertex set
and E C (‘2/) is the edge set. In other words, a simple graph is an undirected graph with neither loops nor
multiple edges.

‘ — From now on, we will work only with simple graphs.

Let us now set up some basic definitions in order to study the structure of a graph and its components:

Definition 8.1.5. Let G = (V, E) be a simple graph.

* Ife = {u,v} € E, then the vertices u and v are called the endpoints of the edge e. We also say that the
edge e is incident with each of its endpoints.

* Two vertices u,v € V are said to be adjacent if {u,v} € E. In this case, we can also say that u and v
are neighbours.

* Avertex v € V is called isolated if it is not adjacent to any other vertex, that is, if there is no edge
e € E incident with v.

Remark 8.1.6. Since we will only work with simple graphs, edges are unordered pairs of vertices.
Accordingly, we will often write {u, v} simply as uv when referring to an edge.

Example 8.1.7. In Figure 8.1, vertices a and b are adjacent, and hence are the endpoints of the edge
{a, b} (denoted by ab, with ab = ba), while vertex e is isolated.

So far, we have described graphs by specifying their vertex and edge sets, or by drawing them. However,
it is useful to encode the adjacency information of a graph using a matrix:

Definition 8.1.8. Let G = (V, E) be a simple graph with vertex set V' = {v1,va,...,v,}. The adjacency
matrix of G is the n x n matrix A = (a;j)1<i,j<n Whose entries record the edge set E, and are defined by

{17 if{viavj}eEa
CLZ']' =

0, otherwise.

The (i, j)-entry of the adjacency matrix records whether the vertices v; and v; are adjacent. Since G is a
simple graph, the adjacency matrix has zeros on the diagonal and is symmetric.

Example 8.1.9. Consider the graph shown in Figure 8.1, with vertex set V' = {a, b, ¢, d, e}. The adjacency
matrix of this graph is

01100
10100
A=[1 101 0],
00100
00000

where the rows and columns are indexed by the vertices a, b, ¢, d, e in that order. Notice that the matrix is
symmetric, reflecting the fact that the graph is undirected, and has zeros on the diagonal since the graph
is simple. Moreover, the final row and column consist entirely of zeros, indicating that the vertex e is
isolated.

Remark 8.1.10. Once an ordering of the vertex set is fixed, the adjacency matrix completely determines
the graph GG, and may therefore be regarded as a matrix representation of the graph.

We now introduce the notion of the degree of a vertex, which counts its neighbours:

Definition 8.1.11. Let G = (V, E) be a simple graph and let v € V. The degree of the vertex v, denoted by
dg(v) (or simply d(v), or even d,,), is the number of edges in E that are incident with v. Equivalently, for a
simple graph, the degree of a vertex is the number of vertices adjacent to it.



Remark 8.1.12. If A is the adjacency matrix of a simple graph G, then the degree of a vertex v; in G is
equal to the sum of the entries in the ith row of A:

dG'(UZ') = Z aij.
7j=1

Definition 8.1.13. A vertex of degree 1 in a graph is called a leaf.

Example 8.1.14. In the graph shown in Figure 8.1, we have
dG(CL) =2, dG(b) =2, dG’(C) =3, dG(d) =1, dG(e) = 0.

In particular, the vertex d is a leaf, while the vertex e is isolated.

8.2 Some standard simple graphs
In this section, we describe some standard families of simple graphs. Recall that for any set S, its
cardinality is denoted by |S| and tells us how many elements there are in the set S.

We begin with the empty or null graph on m vertices, denoted by N,,. This graph, with |V'| = m vertices
but |E| = 0 (no edges), is not the most exciting one.

m times

Figure 8.3: The Null graph V,,.

The complete graph on n vertices, denoted by K, consists of n vertices with an edge joining every pair
of distinct vertices. In this case, |V| =n and |E| = (}).

Figure 8.4: The complete graph K.

The cycle graph on n vertices, denoted by C,,, has vertex set V"= {v1,...,v,} and edge set
E = {v1v2, vav3, ..., Un—1Un, Vpv1}.

In other words, the vertices can be arranged in a ring, with each v; joined to v;11, and with v,, joined back
to vy, forming a cycle. Thus C,, has |V| = n vertices and |E| = n edges, and every vertex has degree 2.

Figure 8.5: The Cycle graph C.



The star graph on n vertices, denoted by .S,,, consists of one central “hub” vertex & (see Figure 8.6) joined
to each of the remaining n — 1 vertices. These n — 1 vertices are leaves, each of degree 1, while the hub
has degree n — 1. Thus S, has |E| = n — 1 edges in total.

h

Figure 8.6: The star graph Ss.

The wheel graph on n vertices, denoted by W,,, can be constructed from the star graph S,, by adding
edges joining the leaves of S,, in a cycle. Thus W,, has |V| = n vertices and |E| = 2(n — 1) edges.

Figure 8.7: The wheel graph W;.

The n-cube is denoted (),, and has 2" vertices. We can construct (),, by labelling its vertices with n-digit
binary strings, and by joining two vertices with an edge precisely when their binary representations differ
in exactly one position. Thus Q,, has |V'| = 2" vertices, and the number of edges is |E| = n2""1: there
are n possible positions in which the strings can differ, and 2"~! choices for the remaining positions.

For example, in Q)3 (see Figure 8.8 below), the vertices 001 and 011 are joined by an edge, since their
binary representations differ in exactly one position (the second), whereas 001 and 111 are not joined, as
they differ in two positions.

000 001
00 101
01d o1
110 111

Figure 8.8: The Cube Qs.

8.3 Handshaking
The main goal of this section is to answer the following question.
In how many different ways can we count the total number of handshakes at a party?

The answer to this question leads to a basic but extremely useful result in graph theory, known as the
Handshaking Lemma:

Lemma 8.3.1. For any graph G = (V, E), we have

> dv) =2|E|. (8.2)

veV



Proof. Each edge has exactly two endpoints. When we sum the degrees of all vertices, each edge is
counted once for each of its endpoints, and hence contributes 2 to the total. Since there are |E| edges, we

obtain
> d(v) =2|E|.
veV
]

We have now answered the previous question: there are two ways to count the number of handshakes at
a party. Counting handshakes one by one corresponds to the right-hand side of (8.2), while asking each
person how many hands they shook corresponds to the left-hand side.

From the Handshaking Lemma we can deduce the following:

Corollary 8.3.2. In any graph, the number of vertices of odd degree is even.

Proof. Let |[V| =n and |E| = m, and let k be the number of vertices of odd degree. We wish to show that
k is even. By the Handshaking Lemma ,
Z d(v) = 2m,

veV

which is even. The sum of the degrees of the n — k vertices of even degree is a sum of even numbers, and
hence is even. Therefore, the sum of the degrees of the remaining % vertices of odd degree must also be
even.

A sum of odd numbers is even only if there are an even number of terms. Hence k, the number of vertices
of odd degree, is even. O

8.4 Graph isomorphism

Graphs are often represented by drawings, but the same graph can be drawn in many different ways:
vertices may be placed in different positions on the page, and edges may be drawn using different
curves. As a result, two drawings may look quite different while representing the same underlying graph.
Conversely, two graphs may look similar at first glance, yet represent genuinely different structures.

For example, do the graphs in Figure 8.9 below represent the same graph?

v

i i d U w

a C

Figure 8.9: Two drawings of graphs. We denote by GG; the graph on the left, with vertex set Vi = {a, b, ¢, d},
and by G, the graph on the right, with vertex set Vo = {u, v, w, z}.

In general, we ask ourselves the following question:
How can we decide whether two graphs are essentially the same, or genuinely different?

The answer should not depend on how a graph is drawn, nor on the particular labels of its vertices.

To answer this question in a precise way, we need a notion that captures the structure of a graph
independently of how it is drawn or labelled. This is the idea behind the concept of graph isomorphism:



Definition 8.4.1. Let G; = (V1, E1) and Gy = (Va, E3) be two simple graphs. We say that G, and G,
are isomorphic, and write G1 ~ G, if there exists a bijection ¢ : V3 — V5 between their vertex sets that
preserves adjacency, that is, such that

{u7v} € b = {90(“)790(7))} € Ls.

In particulay, if G; ~ G, then the graphs must have the same number of vertices, |V;| = |V2], and the
same number of edges, |F1| = | E2|. More importantly, it must be possible to relabel the vertices of G; so
that its edges correspond exactly to the edges of Gs.

Example 8.4.2. Let us show that the graphs in Figure 8.9 are isomorphic. We begin by noting that both
graphs have the same number of vertices, |V;| = |V2| = 4, and the same number of edges, |E;| = |E2| = 4.

We now seek a bijection between the vertex sets that preserves adjacency. Degree considerations are often
a useful first step when searching for an isomorphism. In both graphs, there are two vertices of degree 2,
one vertex of degree 3, and one leaf (of degree 1). It is therefore natural to map first the vertices with
unique degrees; we set ¢(d) = x and ¢(c) = v. We may then ¢(a) = v and ¢(b) = w.

Finally, let us check that this function ¢ does indeed preserve adjacency:

ab — ¢(a)p(b) = ww,
ac — @(a)p(c) = w,
be — ¢(b) p(c) = wo,
cd — p(c)p(d) = vz

Thus, an edge is present in G if and only if ¢ maps it to an edge in G5, and hence G; ~ Go.
Example 8.4.3. We illustrate now the notion of graph isomorphism by listing all non-isomorphic simple
graphs on n vertices, for n = 1,2, 3. These are shown in Figure 8.10.

e For n = 1, there is only one simple graph: a single isolated vertex.

* For n = 2, there are two non-isomorphic simple graphs: one with no edges, and one with a single
edge joining the two vertices.

* For n = 3, there are four non-isomorphic simple graphs. These correspond to having 0, 1, 2, or 3
edges. No two of these graphs are isomorphic, since they have different degree sequences.

Thus, up to isomorphism, there are 1, 2, and 4 simple graphs on 1, 2, and 3 vertices, respectively.

- ceee LSOV A

n=1 n=2 n=3

Figure 8.10: Non-isomorphic simple graphs on n = 1, 2, 3 vertices.



8.5 Complements

Given a simple graph, it is often useful to look not only at the edges that are present, but also at the edges
that are missing. This idea leads to the notion of the complement of a graph:

Definition 8.5.1. Let G = (V, E) be a simple graph. The complement of G, denoted by G, is the graph

G = (V, F) with the same vertex set V, but with edge set F' given by
F:{{u,v}CV:u#vand{u,v}%E}.
In other words, F = (‘2/) \ E (recall (8.1)).

Informally, G has the edges that are missing from G.

Example 8.5.2. Let G = (V, E) be the graph with vertex set V' = {a, b, ¢,d} and edge set E = {ac, ad, cd}.
The complement G has the same vertex set, and contains precisely those edges between distinct vertices
that are not present in G. In this case, F' = {ab, bc, bd}. The graphs G and G are shown in the following
Figure 8.11.

c d & _
G G

Figure 8.11: The graph G described on Example 8.5.2 (on the left) and its complement G (on the right).

8.6 Subgraphs

Often, when working with a graph, we are interested not in the entire graph, but only in a part of it: this
leads to the notion of a subgraph.

Definition 8.6.1. Let G = (V, E) be a simple graph. A graph G, = (V1, E1) is a subgraph of G if
ViCV and E; CE.
In other words, a subgraph of G is obtained by deleting some vertices and/or edges from the original graph G.

Example 8.6.2. Let G = (V, E) be the graph with vertex set V = {u,v,w,z} and edge set £ =
{uv,uz,vr,vw}. Consider the graph G; = (Vi, Ey) with Vi = {u,v,z} and E; = {wv,vz}. Since
Vi €V and E; C E, the graph G is a subgraph of G. The graphs G and G; are shown in Figure 8.12.

w X X
G G

Figure 8.12: The graph G (on the left) and its subgraph G; (on the right), as defined in Example 8.6.2.



Chapter 9. Eulerian graphs

In Chapter 8, we restricted our attention to simple graphs, in which there is at most one edge between
any pair of vertices.

In this chapter, we temporarily relax this restriction and allow multiple edges between the same
pair of vertices; graphs of this type are called multigraphs.

Definition 9.0.1. A multigraph is a graph in which more than one edge is allowed between the same pair of
vertices. The degree of a vertex is defined as before; as the number of edges incident with the vertex.

b
‘\C
a

Figure 9.1: A multigraph G = (V, F) with vertex set V' = {a, b, ¢} where the vertices b and ¢ are joined by
two distinct edges.

Example 9.0.2. In Figure 9.1 we see a multigraph G = (V, F) with vertex set V' = {a,b,c}. We may
denote these edges by e; = ac, ea = bc, and e3 = be, so that the edge set is E = {ey, e2, e3}. Although the
edges es and e3 have the same endpoints, they are regarded as distinct edges.

In this graph, the degrees of the vertices are d(a) = 1, d(b) = 2, and d(c) = 3, since each edge is counted
separately when computing degrees.

— All graphs considered in this chapter are still undirected and have no loops.

9.1 Travelling in graphs

In graph theory, we are often interested in whether it is possible to move through a graph in a certain way.
For instance, we may ask if we can travel from one vertex to another, traverse every edge exactly once,
or return to our starting point without retracing our steps. To formalise these questions, we introduce
several ways of travelling through a graph. These notions differ in how restrictive they are and form a
natural hierarchy.

Definition 9.1.1. Let G = (V, E) be a graph. A walk ~ in G is a finite sequence of vertices and edges
Y= (’LUO, €1,W1,€2,... aek‘awk‘) )
where wy, ..,w € V and ey, .., e, € E, such that for 1 < i < k, the edge e; joins the vertices w; 1 and w;.

The length of the walk is the number of edges it contains.

If the starting vertex wy is the same as the ending vertex wy, the walk is said to be closed.

Example 9.1.2. In the multipgraph from Figure 9.1, the walk v = (b, e2, ¢, e3, b) has length 2 and is closed.

Remark 9.1.3. In a simple graph, a walk is completely determined by its sequence of vertices, since there
is at most one edge between any pair of vertices. In this case, we may describe a walk simply by writing

v = (wo, w1, ..., w).

9



Note that we do not require the vertices or edges of a walk to be distinct; that is, a walk may revisit
vertices or travel along the same edge more than once. We now introduce more restrictive types of walks,
in which repetitions of edges or vertices are not allowed:

Definition 9.1.4. Let G = (V, E) be a graph, and let v = (wp, e1, w1, €2, . .., e, wy) be a walk in G. We say
that ~ is:

* a trail if no edge is repeated;

* a circuit if it is a closed trail of positive length, i.e. if wg = wy and k > 1;
* apath if it is a trail in which no vertex is repeated;

* acycle if it is a closed path, that is, a circuit with no repeated vertices.

Remark 9.1.5. Notice that vertices may be repeated in a trail, but not in a path. In contrast, edges may
not be repeated in either a trail or a path.

Definition 9.1.6. Let G = (V, E) be a graph and u,v € V. Awalk v = (wo, e1, w1, . .., e, wi) in G is said
to be from u to v if wg = u and wy = v.

€9 76
/63 67v
a e
Figure 9.2: A multigraph G = (V, E) with vertex set V' = {a, b, ¢, d, e}.

Example 9.1.7. Consider the multigraph G in Figure 9.2, with edges labelled ey, ..., e7 as in the figure.

The walk 1 = (b, e4, ¢, e5,d) is a walk from b to d of length 2.
- The walk v, = (a, es3, ¢, e5,d, e, €) is a path from a to e.
(

- The walk 73 = (a, e1,b,eq, ¢, e7,¢€,e6,d, e5,c) is a trail, but not a path, since the vertex c is repeated.

The walk v4 = (a,e1,b,e4,c,e5,d, €6, €, e7,c,e3,a) is a circuit, but not a cycle, since the vertex c is
visited more than once.

- The walk 5 = (¢, e5,d, eg, €, €7, ¢) is a cycle.

Definition 9.1.8. Let G = (V, E) be a graph. A Hamiltonian cycle in G is a cycle that visits every vertex of
G exactly once. A graph G is said to be Hamiltonian if it contains a Hamiltonian cycle.

Lemma 9.1.9. Let G = (V, E) be a graph and let u # v be vertices in V. If there is a walk in G from u to v,
then there is a path in G from u to v.

Proof. Lety = (wo, ey, ws, ..., e, wy) be a walk from u to v, so wg = v and wy, = v.
If the vertices wq, w1, . . ., wy, are all distinct, then ~ is already a path.
Otherwise, some vertex is repeated. Let w; be the first vertex in the sequence wg, w1, ..., wy that appears

more than once, and let w; be its last occurrence on the walk, so that i < j and w; = w;. Consider the
shorter walk 7/ obtained by deleting the portion of the walk between these two occurrences, namely

/
Y= (wanlawb---awiaej-l-l,wj-l—la---,ekawk)-

This is still a walk from « to v, and it uses fewer vertices (and hence has fewer repetitions) than ~.
Repeating this deletion process whenever a vertex is revisited, we eventually obtain a walk from u to v
with no repeated vertices, that is, a path from « to v. O

10



Remark 9.1.10. The same argument shows that if G contains a circuit, then it contains a cycle.

Lemma 9.1.11. If G = (V, E) is a finite graph in which every vertex has degree at least 2, then G contains a
cycle.

Proof. Suppose |V| = n and choose any vertex v € V. We construct a walk in G strating from u. Since
dg(u) > 2, there exists a vertex v € V such that {u,v} € E. Set wg = u, w1 = v, and e; = uw; this will be
the beginning of our construction.

Now suppose that we have constructed the following trail ~,, (i.e., with no repeated edges):
Ym = (’UJ(), €1, W1,... 7emywm) .
If w,, = wy, then ~,, is a circuit, and hence G contains a cycle.

If w,, # wy, then since d(w,,) > 2, there exists an edge e,,+1 = {Wm, W1} € E with e,,41 # ep,. We
may therefore extend the trail to v,,11 = (wo, €1, w1, ..., W, €mi1, Wint1)-

There are now two possibilities:

- The vertex w,,+; was already visited, that is, there exists 0 < ¢ < m such that w,,+; = w;. In this
case, the subwalk (w;, €;41, Wit1, .., em+1, Wm+1) is closed and has no repeated edges, hence it is a
circuit. Therefore, G contains a cycle.

- The vertex w,, 1 has not yet been visited. In this case, ~,,.1 is a trail of length m + 1.

Since G has only n vertices, we cannot encounter more than n distinct vertices without repetition.
Therefore, after at most n steps, the first case must occur, and G contains a cycle. O

9.2 Connectedness

We are often interested in knowing whether a graph forms a single whole, or whether it naturally breaks
apart into separate parts. For instance, we may ask whether it is possible to travel between any two
vertices of a graph, or whether some vertices are completely isolated from others. This leads to the notion
of connectedness (or connectivity):

Definition 9.2.1. A graph G = (V, E)) is said to be connected if, for any two vertices u,v € V, there exists a
walk in G from u to v.
Even if a graph is not connected, parts of it may be, this leads into the following notion:

Definition 9.2.2. Let G = (V, E) be a graph. A connected component of G is a subgraph G, = (V1, E1)
such that:

e (31 is connected;
* whenever u,v € V; and {u,v} € E, then {u,v} € Ey;
e forany u € V3 and v € V' \ V4, there is no walk in G from u to v.

In other words, a connected component of G is a connected subgraph that is not contained in any larger
connected subgraph of G.

Example 9.2.3. The graph in Figure 8.1 is not connected, since there is no path connecting the vertex e
to any other vertex of the graph; one of its connected components is the subgraph containing the vertices
{a, b, c,d}. In contrast, the graph in Figure 9.2 is connected.

The following properties follow directly from the previous Definition 9.2.2:

- Two vertices of G lie in the same connected component if and only if there exists a path in G
between them.

- If a graph G is not connected, then it has at least two connected components.

11



9.3 The bridges of Konigsberg

One of the questions a tourist might ask when visiting a new city is whether it is possible to visit all the
landmarks without passing along the same streets more than once. This is precisely the kind of question
that the residents of Konigsberg asked themselves during their Sunday walks through the city. In the 18th
century, this seemingly simple problem led to one of the earliest applications of graph theory.

Pl 34

50'777‘7/2!722“: Arad. 2D W]&Am

Figure 9.3: The bridges of Konigsberg in Euler’s 1741 work Solutio problematis ad geometriam situs
pertinentis.

Konigsberg was a city in East Prussia, divided into four regions by the Pregel river and connected by seven
bridges, as shown in Figure 9.3. Their inhabitants would often ask themselves the following question:

“Can one arrange a course in such a way as to pass over each bridge once and not more than once?”

Now, if we represent each land mass by a vertex and each bridge by an edge, we obtain a graph as shown
in Figure 9.4, and this becomes a graph theory question: for a given graph, does there exist a walk that
uses each edge exactly once?

Figure 9.4: Graph representation of the Bridges of Konigsberg.

Euler showed that such a walk in Kénigsberg is impossible. The key observation is that, in any closed walk
that uses each edge exactly once, every time one enters a vertex one must also leave it. Consequently,
each vertex must have even degree. In the graph corresponding to the Bridges of Konigsberg, all four
vertices have odd degree, and so no such walk can exist. This problem motivates the following definitions:

Definition 9.3.1. An Eulerian circuit in a graph G is a circuit that uses each edge of G exactly once. A
graph that contains an Eulerian circuit is called an Eulerian graph.

9.4 Euler’s theorem

The problem of the bridges of Konigsberg motivated Euler to study, in general, when it is possible to
traverse every edge of a graph exactly once and return to the starting point. His answer is given by the
following theorem, which carries his name and characterises precisely when such a walk exists.

Theorem 9.4.1. Let G = (V, E) be a finite connected graph with |V'| > 1. Then G has an Eulerian circuit if
and only if every vertex of G has even degree.

12



We have already proved the forward implication (=) of Theorem 9.4.1: in a closed walk that uses each
edge exactly once, every time we enter a vertex we must also leave it, and hence every vertex must have
even degree. To prove the converse (<), we will make use of the notion of edge-disjoint cycles and an
auxiliary lemma.

Definition 9.4.2. Let G = (V, E) be a graph. Two cycles C; and Cs in G are said to be edge-disjoint if they
do not share any edges. More generally, a collection of cycles C1,Cs, ...,C, in G is called edge-disjoint if no
edge of G belongs to more than one of these cycles.

Lemma 9.4.3. Let G = (V, E) be a finite connected graph with |V'| > 1. If every vertex of G has even degree,
then G can be written as a finite union of edge-disjoint cycles.

Proof. Since G is connected and |V| > 1, it has no isolated vertices. Thus every vertex has degree at least
2, and by Lemma 9.1.11 the graph G contains a cycle C}.

Remove all edges of C; from . Each vertex of C loses exactly two incident edges, while all other vertices
are unchanged; in particular, all remaining vertices still have even degree. Discard any vertices that have
become isolated.

If edges remain, the resulting graph is again finite and all its vertices have even degree, so by Lemma 9.1.11
it contains another cycle C5. Repeating this process, and using the fact that G is finite, we eventually
remove all edges of G.

Thus every edge of G belongs to exactly one of the cycles Cy, Cs, ..., Cf, and G is a union of edge-disjoint
cycles. O

Proof of Theorem 9.4.1 (<=). Let G be a finite connected graph in which every vertex has even degree.
By Lemma 9.4.3, the graph G is a union of k£ edge-disjoint cycles. We prove by induction on & that these
cycles can be combined into a single Eulerian circuit.

Base case. If k = 1, then G itself is a single cycle, which is an Eulerian circuit. Indeed, a cycle by itself is
already an Eulerian graph, since it provides a closed walk that uses each of its edges exactly once.

Induction hypothesis. Assume that any finite connected graph whose edges can be written as a union of at
most k — 1 edge-disjoint cycles has an Eulerian circuit.

Induction step. Suppose that
G=C1UCyU---UCL_1UCy

is a union of k edge-disjoint cycles, and let

H=CiuCyU---UCj_1.

The graph H may not be connected, so let Hy,..., H; be its connected components. Each cycle C; (for
1 <i <k —1) lies entirely within a single connected component of H. Consequently, each H; is a union
of fewer than & edge-disjoint cycles and has all vertices of even degree. By the induction hypothesis, each
H; admits an Eulerian circuit.

Since G is connected, the cycle C}, must intersect every connected component H; of H, each of which
admits an Eulerian circuit. We now construct an Eulerian circuit for G as follows. Begin by traversing
the cycle C. Whenever we first reach a vertex belonging to a component H;, we temporarily leave Cy,
traverse the Eulerian circuit of H; in full, and then return to C}, at the same vertex. Continuing in this way,
we obtain a single closed walk that uses every edge of G exactly once, and hence an Eulerian circuit. [
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Chapter 10. Planar graphs

10.1 The three utilities problem

Let us begin with a classical puzzle, known as the three utilities problem, which will motivate the material
studied in this chapter. Given three houses, the puzzle consists of determining whether it is possible to
connect each house to the gas, water, and electricity supplies in such a way that none of the pipes or wires
cross. Figure 10.1 illustrates this situation.

Figure 10.1: The three utilities problem.
At first sight, this problem looks like a puzzle about clever drawing. However, it can be translated into a

precise question in graph theory.

Notice that we can distinguish two different kinds of vertices in this graph: the vertices corresponding to
houses and the vertices corresponding to utility supplies. Moreover, each vertex of one kind needs to be
connected to all vertices of the other kind. This motivates the following definitions.

Definition 10.1.1. A simple graph G = (V, E) is called bipartite if its vertex set V' can be partitioned into
two disjoint sets Vi and Vs such that every edge of G has one endpoint in Vi and the other in Vs. In other
words,this means that there exist two vertex subsets V1, Vo C V such that

ViuVe =V and VinVy =0,
and every edge e € F connects a vertex in V; with a vertex in Vs.
If we want every vertex of V; to be connected to every vertex of V5, then we obtain what is called a
complete bipartite graph:

Definition 10.1.2. Let G = (V, E) be a bipartite graph with vertex partition V = V; U Va. We say that G is
a complete bipartite graph if every vertex in V) is adjacent to every vertex in V. In particular, if |Vi| = m
and |Va| = n, the resulting graph is denoted by K, ,, and has m x n edges.

Figure 10.2: The complete bipartite graph K> 4, with the two parts of the vertex set shown in different
colours.

The graph associated to the three utilities problem is therefore the complete bipartite graph K 3.

14



We are now ready to introduce the notion of a planar graph.

Definition 10.1.3. A graph is called planar if it can be drawn in the plane (R?)in such a way that no two
edges cross, except possibly at their endpoints. Such a drawing is called a planar representation of the
graph.

Example 10.1.4. The complete graph K} is planar. One possible planar representation of K is shown in
Figure 10.3.

Figure 10.3: A planar representation of Ky .

With these definitions, the three utilities problem can be reformulated as the following graph-theoretic
question: is the graph K3 3 planar? In the remainder of this chapter, we shall develop tools that allow us
to answer this question.

10.2 Faces and boundaries

To study planar graphs more systematically, we need to understand how a planar drawing of a graph
divides the plane into regions, that we will call faces.

Definition 10.2.1. Let G = (V, E) be a simple planar graph and fix a planar drawing of G.

* The faces of the drawing are the connected regions of the plane that remain after the vertices and edges
of the graph have been drawn. We denote by F the set of faces of the drawing, and by f € F a face.

* The boundary of a face f is the set of edges of G that lie along the border of f. We denote the boundary
of f € F by B(f).

* The length of the boundary of f, denoted by b(f), is the number of edges on its boundary, counted with
multiplicity if an edge appears more than once.

In a planar drawing, every edge has two sides. If both sides of an edge belong to the same face, then the
edge appears twice along the boundary of that face. This situation occurs precisely when the edge is a
bridge.

Definition 10.2.2. An edge e of a graph G is called a bridge if removing e increases the number of connected
components of G.

c e
fa /
d
0
f1
a b

Figure 10.4: Planar representation of a disconnected graph G = (V, E') with vertex set V' = {a, b, ¢, d, e, 0}.
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Example 10.2.3. The planar graph G represented in Figure 10.4 has face set F' = { f1, fo, f3, f4} with
boundaries

B(f1) = {ab,a0,bo}, B(f2)={bc,bo,co}, B(f3)={ac,ao,co}, B(fs)={ab,bc,ac,de}.

Notice that the edge de is a bridge; indeed, if we remove it, then the graph would have one connected
component instead of two. Equivalently, both sides of the edge lie in the same face, namely f4. Thus, the
lengths of the boundaries are given by

b(f1) =b(f2) =b(f3) =3,  b(fa) =5.

Remark 10.2.4. Every planar drawing has exactly one unbounded (infinite) face, corresponding to the
region of the plane outside the graph; this follows from what is known as the Jordan Curve Theorem. In
the drawing of Figure 10.4, the face f, is the unbounded face.

Just as the degrees of vertices in a graph are related to the number of edges via the handshaking lemma,
there is an analogous relationship in planar graphs between the edges and the boundaries of faces. This
is known as the planar handshaking lemma:

Lemma 10.2.5 (Planar handshaking lemma). Let G = (V, E) be a planar graph with face set F. Then

> b(f) =2|E|. (10.1)

fer

Proof. Each edge in a planar drawing has two sides, and each side lies on the boundary of a face. Thus
each edge contributes 1 to the boundary length of two (not necessarily distinct) faces, and so contributes
2 in total. Summing over all edges gives the desired equality (10.1). O

The following two results give tools to recognise bridges in graphs.

Lemma 10.2.6. Let G = (V, E) be a simple graph. An edge e € E is a bridge if and only if it is not contained
in any cycle of G.

Proof. Let e join the vertices v and v in the vertex set V.

(=) Suppose that ¢ is not a bridge. Then removing e does not disconnect the graph (by definition of a
bridge), so there is still a path from u to v that does not use e. Together with the edge e, this path forms a
cycle containing e.

(<) Conversely, suppose that e is contained in a cycle. Then there is a path from u to v that does not use
e. Removing e therefore does not disconnect the graph, and so e is not a bridge. O

Notice that Lemma 10.2.6 holds for all graphs and does not require planarity. Planarity is only used in the
following Corollary 10.2.7, which aims to recognise bridges in planar graphs.

Corollary 10.2.7. In a planar representation of a finite graph, an edge has both sides in the same face if and
only if it is a bridge.

Proof. (=) Suppose that an edge e is not a bridge. By Lemma 10.2.6, e is contained in a cycle. In a planar
drawing, this cycle forms a closed curve, and the two sides of the edge lie on opposite sides of this curve.
Hence the two sides of e lie in different faces, so e cannot have both sides in the same face.

(<) Conversely, suppose that e is a bridge joining vertices © and v. Removing e disconnects the graph
into two components, one containing « and the other containing v. In the planar drawing, it is therefore
possible to move from one side of e to the other by travelling around the outside of one of these
components without crossing any edge. Hence both sides of ¢ lie in the same face. O
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10.3 Euler’s Formula

— From now on, for simplicity, when we say “planar graph” we mean a fixed planar representation
of a graph.

This section is dedicated to Euler’s formula, a fundamental relation between the numbers of vertices,
edges and faces of a planar graph, and one of the key tools in planar graph theory.

Theorem 10.3.1 (Euler’s formula). Let G = (V, E) be a finite planar graph with face set ' and k connected
components. Then
V| —|E|+ |F|=k+ 1.

Proof. We prove the result by induction on the number of edges n = |E)|.

Base case. If |[E| = n = 0, then G consists of k = |V| isolated vertices (since G has k£ connected
components), and there is exactly one face, namely the unbounded face. Thus

V|- |E|+|F|=|V|-0+1=k+1,
so the formula holds in this case.
Induction hypothesis. Assume that Euler’s formula holds for all planar graphs with n — 1 edges.

Induction step. Let G be a planar graph with n edges, and remove one edge ¢ to obtain a planar graph G'.
Then G’ has the same vertices, n — 1 edges, and some number of faces |F”’| and components &’.

By the induction hypothesis,
VI—(n—1)+|F|=F+1.

We now compare GG and G’ by considering whether e is a bridge.

* If e is not a bridge, then removing it does not change the number of connected components, so
k' = k. By Corollary 10.2.7, the two sides of ¢ lie in different faces of G, which merge into a single
face in G'. Hence |F'| = |F| — 1. Substituting into the induction equation gives

VI=( -1+ (F-1)=k+1,
which simplifies to |V| —n + |F| =k + 1.

* If e is a bridge, then removing it increases the number of connected components by one, so ¥’ = k+1.
Again by Corollary 10.2.7, both sides of e lie in the same face, so removing e does not change the
number of faces: |F’| = |F|. Substituting into the induction equation gives

Vi—(n—=1)+|F|=(k+1)+1,
which again simplifies to |V| —n + |F| = k + 1.
In both cases, this completes the induction and proves Euler’s formula. O
Remark 10.3.2. In particular, if G is a connected graph, then Euler’s formula reduces to
V=Bl +|F| = 2.

Example 10.3.3. Consider the planar graph in Figure 10.4. It has vertex set V = {a,b,c,d, e, 0}, so
|V| = 6. The edge set is given by E = {ab, b, ca, ao, bo, co, de}, hence |E| = 7. The planar representation
has four faces, labelled F' = { f1, f2, f3, f1}, so |F| = 4. Finally, the graph has two connected components
(the triangle, and the single edge de), so k = 2. Thus Euler’s formula gives

V| = |E|+|F|=6-7T+4=3=Fk+]1.
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10.4 Simple planar graphs have few edges

If we allow multiple edges between the same pair of vertices, then there is no upper bound on the number
of edges of a planar graph (see Figure 10.5).

m

=\

1

Figure 10.5: A planar graph with m edges.

However, for simple graphs the situation is very different. In general, a simple graph with |V| vertices
can have at most W edges. This naturally leads to the following question: what is the maximum
number of edges that a simple planar graph can have?

As we shall see, the answer is surprisingly small. In particular, in this section we will show that if a simple
graph has too many edges, then it cannot be planar.

We begin with a basic upper bound on the number of edges of a planar graph.
Theorem 10.4.1. If G = (V, E) is a simple planar graph with |V'| > 3, then
|E| < 3|V| —6. (10.2)

Proof. If |E| < 2, then the inequality holds trivially since [V| > 3.

Assume now that |E| > 3. Since G is simple, it has no loops or multiple edges, so no face boundary can
have length 1 or 2. Hence for every face f € F' we have b(f) > 3. Therefore, by the planar handshaking
lemma,

2B =) b(f) = 3|F|,

fer
and thus |F| < 2|E|.

Now using Euler’s formula,
VI-IE[+[F|=k+122,

and substituting the bound on |F'| gives
2
V|- |E|+ g\E| > 2.
Rearranging the terms, one obtains (10.2). O

This is useful because it allows us to determine whether a graph is planar without drawing it. For instance:

Corollary 10.4.2. The complete graph K is not planar.
Proof. The graph K; has |V| =5 and |E| = 10. But
3V|—6=9<10=|E|

so K5 does not satisfy the inequality in Theorem 10.4.1. Hence it is not planar. O
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Returning to the three utilities problem, the argument in Theorem 10.4.1 does not rule out the possibility
that K3 5 is planar, since |E| =9 < 12 = 3|V| — 6. We now refine the argument to deal with this case.

Definition 10.4.3. The girth g of a graph G is the length of its shortest cycle. If G has no cycles, then g = 0.

Proposition 10.4.4. Let G = (V, E) be a simple planar graph with girth g > 3. Then

g
|E| < ﬁ(|v| -2).

Proof. By definition of faces and girth, for every face f € F we have b(f) > ¢, that is, every face is
bounded by at least g edges. Together with the planar handshaking lemma, this gives

2|E| =Y b(f) = g|F|,

fer

and hence |F| < @.

Using Euler’s formula, and since there is at least one connected component, we have
V|- |E|+|F|=k+1>2.
Substituting the bound on | F| yields
2|F
|V—|E\+‘g‘22.

Finally, rearranging gives
g
El < ——(|V]|-2).
< Lo(vi-2)

O]

Remark 10.4.5. Since G is simple, it has no loops or multiple edges, and therefore its girth cannot be 1
or 2. In particulay, if g = 3, the bound above reduces to |E| < 3|V| — 6, recovering Theorem 10.4.1.

We are now ready to solve the three utilities problem:

Corollary 10.4.6. The graph K3 3 is not planar.

Proof. First note that a bipartite graph has no cycles of odd length. Indeed, since edges only join vertices
in different parts of the bipartition, vertices along any path alternate between the two parts, and a path
can return to its starting vertex only after an even number of steps.

Since the graph K33 is bipartite, it has no odd cycles, and therefore its girth is ¢ = 4. As |V| = 6,
Proposition 10.4.4 would give

4
Bl < 56-2) =58,
which is false since |E| = 9. Hence K3 3 is not planar. O
We now give a further simple but important consequence of the edge bound for planar graphs.
Theorem 10.4.7. Every finite simple planar graph has a vertex of degree at most 5.
Proof. Assume that every vertex has degree at least 6. Then by the handshaking lemma,

21E| = d(v) > 6|V,

veV

so |E| > 3|V, which contradicts the inequality in Theorem 10.4.1. Hence the graph cannot be planar. [J
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Finally, we introduce a notion that allows us to describe planarity in a more general way, and state a
classical theorem that characterises planar graphs.

Definition 10.4.8. A subdivision of a graph G is obtained by replacing edges of G by paths, that is, by
inserting new vertices of degree 2 along edges.

Figure 10.6: On the left, the graph K5. On the right, a subdivision of K5 obtained by inserting vertices of
degree 2 along some edges.

Remark 10.4.9. Subdividing an edge does not affect whether a graph can be drawn in the plane without
Crossings.

Theorem 10.4.10 (Kuratowski’s Theorem). A finite graph is planar if and only if it contains no subdivision
of K5 or K33 as a subgraph.

We will not prove this theorem in this course. The forward implication follows from the fact that planarity
is preserved under subdivisions, together with the non-planarity of K5 and K3 3. The converse direction
is substantially more difficult.

10.5 Platonic graphs

We conclude this chapter with a classical and elegant application of Euler’s formula. We ask the following
question: how symmetric can a planar graph be?

Definition 10.5.1. A Platonic graph is a finite, simple, connected planar graph in which

* every vertex has the same degree d > 3, and

* every face has the same boundary length b > 3.

These graphs correspond exactly to the graphs of the Platonic solids.

Theorem 10.5.2. There are exactly five Platonic graphs.

Proof. Let G = (V, E') be a Platonic graph, where every vertex has degree d and every face has boundary
length b.

By the handshaking lemma applied to the vertices, and the planar handshaking lemma applied to the
faces, we have

> dw)=d|V|=2|E| and » b(f)=b|F|=2|E|.

veV fer
Hence d|V| = 2|E| = b|F|.

Since G is connected, Euler’s formula gives |V| — |E| + |F| = 2. Substituting |F| = % and |F| = %

yields
dav| d|v
‘V’ _M_i_g —

2.
2 b

Multiplying by 2b gives |V |(2b — bd 4 2d) = 4b.
Since |V| > 0 and b > 0, this implies 2b + 2d — bd > 0, which is equivalent to

(b—2)(d—2) < 4.
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As b > 3 and d > 3 are integers, there are only five possible pairs (b, d) satisfying this inequality. Each of
these gives rise to a Platonic graph; we list them in the following table.

d|b||V|||E|||F|| Name

313 4 6 4 | Tetrahedron

314| 8 12 | 6 | Cube (Hexahedron)
43| 6 | 12 | 8 | Octahedron
35|20 | 30 | 12 | Dodecahedron
513] 12 | 30 | 20 | Icosahedron

O]

This result shows the strength of Euler’s formula: from a simple counting argument, we obtain a complete
classification of the most symmetric planar graphs.
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